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Abstract

This paper presents performance results for the design and implementation of parallel

pipelined Space-Time Adaptive Processing (STAP) algorithms on parallel computers. In par-

ticular, the paper describes the issues involved in parallelization, our approach to parallelization

and performance results on an Intel Paragon. The paper also discusses the process of devel-

oping software for such an application on parallel computers when latency and throughput are

both considered together and presents tradeoffs considered with respect to inter and intra-task

communication and data redistribution. The results show that not only scalable performance

was achieved for individual component tasks of STAP but linear speedups were obtained for

the integrated task performance, both for latency as well as throughput. Results are presented

for up to 236 compute nodes (limited by the machine size available to us). Another interesting

observation made from the implementation results is that performance improvement due to the

assignment of additional processors to one task can improve the performance of other tasks

without any increase in the number of processors assigned to them. Normally, this cannot be

predicted by theoretical analysis.
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1 Introduction

Space-time adaptive processing (STAP) is a well known technique in the area of airborne surveil-

lance radars used to detect weak target returns embedded in strong ground clutter, interference,

and receiver noise. STAP is a 2-dimensional adaptive filtering algorithm that attenuates unwanted

signals by placing nulls in their directions of arrival and Doppler frequencies. Most STAP applica-

tions are computationally intensive and must operate in real time. High performance computers are

becoming mainstream due to the progress made in hardware as well as software support in the last

few years. They can satisfy the STAP computational requirements of real-time applications while

increasing the flexibility, affordability, and scalability of radar signal processing systems. How-

ever, efficient parallelization of a STAP algorithm which has embedded in it different processing

steps is challenging and is the subject of this paper.

This paper describes our innovative parallel pipelined implementation of a Pulse Repetition

Interval (PRI)-staggered post-Doppler STAP algorithm on the Intel Paragon at the Air Force Re-

search Laboratory (AFRL), Rome, New York. For a detailed description of the STAP algorithm

implemented in this work, the reader is referred to [1, 2]. AFRL successfully installed their im-

plementation of the STAP algorithm onboard an airborne platform and performed four flight ex-

periments in May and June 1996 [3]. These experiments were performed as part of the Real-Time

Multi-Channel Airborne Radar Measurements (RTMCARM) program. The RTMCARM system

block diagram is shown in Figure 1. In that real-time demonstration, live data from a phased ar-

ray radar was processed by the onboard Intel Paragon and results showed that high performance

computers can deliver a significant performance gain. However, this implementation used com-

pute nodes of the machine only as independent resources in a round robin fashion to run differ-

ent instances of STAP (rather than speeding up each instance of STAP.) Using this approach, the

throughput may be improved, but the latency is limited by what can be achieved using one compute

node.

Parallel computers, organized with a large set (several hundreds) of processors linked by a spe-

cialized high speed interconnection network, offer an attractive solution to many computationally

intensive applications, such as image processing, simulation of particle reactions, and so forth.

Parallel processing splits an application problem into several subproblems which are solved on
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Figure 1. RTMCARM system block diagram.

multiple processors simultaneously. To learn more about parallel computing, the reader is referred

to [4, 5, 6, 7, 8]. For our parallel implementation of this real application we have designed a model

of the parallel pipeline system where each pipeline is a collection of tasks and each task itself is

parallelized. This parallel pipeline model was applied to the STAP algorithm with each step as a

task in a pipeline. This permits us to significantly improve latency as well as throughput.

This paper discusses both the parallelization process and performance results. In addition, de-

sign considerations for portability, task mapping, parallel data redistribution, parallel pipelining

as well as system-level and task-level performance measurement are presented. Finally, the per-

formance and scalability of the implementation for a large number of processors is demonstrated.

Performance results are given for the Intel Paragon at AFRL.

The paper is organized as follows. In Section 2 we discuss the related work. An overview of

the implemented algorithm is given in Section 3. In Section 4 we present the parallel pipeline

system model and discuss some parallelization issues and approaches for implementation of STAP

algorithms. Section 5 presents specific details of STAP implementation. Performance results and
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experiments.

conclusions are presented in Section 7 and Section 8, respectively.

2 Related Work

The RTMCARM experiments were performed using a BAC 1-11 aircraft. The radar was a phased

array L-Band radar with 32 elements organized into two rows of 16 each. Only the data from the

upper 16 elements were processed with STAP. This data was derived from a 1.25 MHz intermediate

frequency (IF) signal that was 4:1 oversampled at 5 MHz. The number representation at IF was 14

bits, 2’s complement and was converted to 16 bit baseband real and imaginary numbers. Special

interface boards were used to digitally demodulate IF signals to baseband. The signal data formed

a raw 3-dimensional data cube, called the coherent processing interval (CPI) data cube, comprised

of 128 pulses, 512 range gates (32.8 miles), and 16 channels. These special interface boards were

also used to corner turn the data cube so that the CPI is unit stride along pulses. This speeds the

subsequent Doppler processing on the High Performance Computing (HPC) systems. Live CPI

data from a phased-array radar were processed by a ruggedized version of the Paragon computer.

The ruggedized version of the Intel Paragon system used for the RTMCARM experiments con-

sists of 25 compute nodes running the SUNMOS operating system. Figure 2 depicts the system
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implementation. Each compute node has three i860 processors accessing the common memory

of size 64M bytes as a shared resource. The CPI data sets were sent to the 25 compute nodes in

a round robin manner and all three processors worked on each CPI data set as a shared-memory

machine. The system processed up to 10 CPIs per second (throughput) and achieved a latency of

2.35 seconds per CPI. This implementation used compute nodes of the machine as independent re-

sources to run different instances of CPI data sets. No communication among compute nodes was

needed. This approach can achieve desired throughput by using as many nodes as needed, but the

latency is limited by what can be achieved using the three processors in one compute node. More

information on the overall system configuration and performance results can be found in [1, 3].

Other related work [9, 10, 11, 12] parallelized high-order post-Doppler STAP algorithms by

partitioning the computational workload among all processors allocated for the applications. In

[9, 10], the work focused on the design of parallel versions of subroutines for FFT and QR decom-

position. In [11, 12], the implementations optimized the data redistribution between processing

steps in the STAP algorithms while using sequential versions of the FFT and QR decomposition

subroutines. A multi-stage approach was employed in [13] which was an extension of [11, 12]. A

beam space post-Doppler STAP was divided into three stages and each stage was parallelized on

a group of processors. A technique called replication of pipeline stages was used to replicate the

computational intensive stages such that a different data instance is run on a different replicated

stage. Their effort focused on increasing the throughput while keeping the latency fixed. For other

related work, the reader is referred to [14, 15, 16].

3 Algorithm Overview

The adaptive algorithm, which cancels Doppler shifted clutter returns as seen by the airborne radar

system, is based on a least squares solution to the weight vector problem. This approach has

traditionally yielded high clutter rejection but suffers from severe distortions in the adapted main

beam pattern and resulting loss of gain on the target. Our approach, which is described in greater

detail in the Appendix, introduces a set of constraint equations into the least squares problem

which can be weighted proportionally to preserve main beam shape. The algorithm is structured

so that multiple receive beams may be formed without changing the matrix of training data. Thus,
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the adaptive problem can be solved once for all beams which lie within the transmit illumination

region. The airborne radar system was programmed to transmit five beams, each 25 degrees in

width, spaced 20 degrees apart. Within each transmit beam, six receive beams were formed by the

processor.

A MATLAB version of the code which was parallelized is presented in the Appendix. The

algorithm consists of the following steps:

1. Doppler filter processing,

2. Weight computation,

3. Beamforming,

4. Pulse compression, and

5. CFAR processing.

Doppler filtering is performed on each receive channel using weighted Fast Fourier Transforms

(FFT’s). The analog portion of the receiver compensates the received clutter frequency to center

the clutter frequency at zero regardless of the transmit beam position. This simplifies indexing

of Doppler bins for classification as ”easy” or ”hard” depending on their proximity to mainbeam

clutter returns. For the hard cases, Doppler processing is performed on two 125-pulse windows of

data separated by three pulses (a STAP technique known as ”PRI-stagger”). Both sets of Doppler

processed data are adaptively weighted in the beamforming process for improved clutter rejection.

In the easy case, only a single Doppler spectrum is computed. This simpler technique has been

termed Post Doppler Adaptive Beamforming and is quite effective at a fraction of the computa-

tional cost when the Doppler bin is well separated from mainbeam clutter. In these situations, an

angular null placed in the direction of the competing ground clutter provides excellent rejection.

Selectable window functions are applied to the data prior to the Doppler FFT’s to control sidelobe

levels. The selection of a window is a key parameter in that it impacts the leakage of clutter returns

across Doppler bins, traded off against the width of the clutter passband.

An efficient method of beamforming using recursive weight updates is made possible by a block

update form of the QR decomposition algorithm. This is especially significant in the hard Doppler
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regions, which are computed using separate weights for six consecutive range intervals. The re-

cursive algorithm requires substantially less training data (sample support) for accurate weight

computation, as well as providing improved efficiency. Since the hard regions have one sixth the

range extent from which to draw data, this approach dealt with the paucity of data by using past

looks at the same azimuth, exponentially forgotten, as independent, identically distributed esti-

mates of the clutter to be cancelled. This assumes a reasonable revisit time for each azimuth beam

position. During the flight experiments, the five 25 degree transmit beam positions were revisited

at a 1-2 Hz rate (5-10 CPIs per second.)

The training data for the easy Doppler regions was selected using a more traditional approach.

Here, the entire range extent was available for sample support, so the entire training set was drawn

from three preceding CPIs for application to the next CPI in this azimuth beam position. In this

case, a regular (non-recursive) QR decomposition is performed on the training data, followed by

block update to add in the beam shape constraints.

Pulse compression is a compute intensive task, especially if applied to each receive channel in-

dependently. In general, this approach is required for adaptive algorithms which compute different

weight sets as a function of radar range. Our algorithm, however, with its mainbeam constraint,

preserves phase across range. In fact, the phase of the solution is independent of the clutter nulling

equations, and appears only in the constraint equations. The adapted target phase is preserved

across range, even though the clutter and adaptive weights may vary with range. Thus, pulse

compression may be performed on the beamformed output of the receive channels providing a

substantial savings in computations.

In the sections to follow, we present the process of parallelization and software design consider-

ations including those for portability, task mapping, parallel data redistribution, parallel pipelining

and issues involved in measuring performance in implementations when not only the performance

of individual tasks is important, but overall performance of the integrated system is critical. We

demonstrate the performance and scalability for a large number of processors.
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4 Model of the Parallel Pipelined System

The system model for the type of STAP applications considered in this work is shown in Figure

3. A pipeline is a collection of tasks which are executed sequentially. The input to the first task

is obtained normally from sensors or other input devices with the inputs to the remaining tasks

coming from outputs of previous tasks. The set of pipelines shown in the figure indicates that

the same pipeline is repeated on subsequent input data sets. Each block in a pipeline represents

one task, that is parallelized on multiple (different number of) processors. That is, each task is

decomposed into subtasks to be performed in parallel. Therefore, each pipeline is a collection of

parallel tasks.

In such a system, there exist both spatial and temporal parallelism that result in two types of

data dependencies and flows, namely, spatial data dependency and temporal data dependency

[17, 18, 19]. Spatial data dependency can be classified into inter-task data dependency and intra-

task data dependency. Intra-task data dependencies arise when a set of subtasks needs to exchange

intermediate results during the execution of a parallel task in a pipeline. Inter-task data depen-
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dency is due to the transfer and reorganization of data passed onto the next parallel task in the

pipeline. Inter-task communication can be communication from the subtasks of the current task to

the subtasks of the next task, or collection and reorganization of output data of the current task and

then redistribution of the data to the next task. The choice depends on the underlying architecture,

mapping of algorithms and input-output relationship between consecutive tasks. Temporal data

dependency occurs when some form of output generated by the tasks executed on the previous

data set are needed by tasks executing the current data set. STAP is an interesting parallelization

problem because it exhibits both types of data dependency.

4.1 Parallelization Issues and Approaches

A STAP algorithm involves multiple algorithms (or processing steps), each of which performs

particular functions, to be executed in a pipelined fashion. Multiple pipelines need to be executed

in a staggered manner to satisfy the throughput requirements. Each task needs to be parallelized

for the required performance, which, in turn, requires addressing the issue of data distribution

on the subset of processors on which a task is parallelized to obtain good efficiency and incur

minimal communication overhead. Given that each task is parallelized, data flow among multiple

processors of two or more tasks is required and, therefore, communication scheduling techniques

become critical.

4.1.1 Inter-task Data Redistribution

In an integrated system, data redistribution is required to feed data from one parallel task to an-

other, because the way data is distributed in one task may not be the most appropriate distribution

for the next task for algorithmic or efficiency reasons. For example, the FFTs in the Doppler fil-

ter processing task perform optimally when the data is unit-stride in pulse, while the next stage,

beamforming, performs optimally when the data is unit stride in channel. To ensure efficiency

and continuity of memory access, data reorganization and redistribution are required in the inter-

task communication phase. Data redistribution also allows concentration of communication at the

beginning and the end of each task.

We have developed runtime functions and strategies that perform efficient data redistribution
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[20]. These techniques reduce the communication time by minimizing contention on the commu-

nication links as well as by minimizing the overhead of processing for redistribution (which adds

to the latency of sending messages). We take advantage of lessons learned from these techniques

to implement the parallel pipelined STAP application.

4.1.2 Task Scheduling and Processor Assignment

An important factor in the performance of a parallel system is how the computational load is

mapped onto the processors in the system. Ideally, to achieve maximum parallelism, the load must

be evenly distributed across the processors. The problem of statically mapping the workload of a

parallel algorithm to processors in a distributed memory system has been studied under different

problem models, such as [21, 22]. The mapping policies are adequate when an application consists

of a single task, and the computational load can be determined statically. These static mapping

policies do not model applications consisting of a sequence of tasks (algorithms) where the output

of one task becomes the input to the next task in the sequence.

Optimal use of resources is particularly important in high-performance embedded applications

due to limited resources and other constraints such as desired latency or throughput [23]. When

several parallel tasks need to be executed in a pipelined fashion, tradeoffs exist between assigning

processors to maximize the overall throughput and assigning processors to minimize a single data

set’s response time (or latency.) The throughput requirement says that when allocating processors

to tasks, it should be guaranteed that all the input data sets will be handled in a timely manner.

That is, the processing rate should not fall behind the input data rate. The response time criteria,

on the other hand, require minimizing the latency of computation on a particular set of data input.

To reduce the latency, each parallel task must be allocated more processors to reduce its exe-

cution time, and consequently, the overall execution time of the integrated system. But it is well

known that the efficiency of parallel programs usually decreases as the number of processors is in-

creased. Therefore, the gains in this approach may be incremental. On the other hand, throughput

can be increased by increasing the latency of individual tasks by assigning them fewer processors

and, therefore, increasing efficiency, but at the same time having multiple streams active concur-

rently in a staggered manner to satisfy the input-data rate requirements. We next present these

tradeoffs and discuss various implementation issues.
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5 Design and Implementation

The design of the parallel pipelined STAP algorithm is shown in Figure 4. The parallel pipeline

system consists of seven basic tasks. We refer to the parallel pipeline as simply a pipeline in the rest

of this paper. The input data set for the pipeline is obtained from a phased array radar and is formed

in terms of a coherent processing interval (CPI). Each CPI data set is a 3-dimensional complex data

cube comprised of range cells,� channels, and� pulses. The output of the pipeline is a report

on the detection of possible targets. The arrows shown in Figure 4 indicate data transfer between

tasks. Although a single arrow is shown, note that each represents multiple processors in one task

communicating with multiple processors in another task. Each task� is parallelized by evenly

partitioning its work load among��� processors. The execution time associated with task� , ��� ,
consists of the time to receive data from the previous task, computation time, and time to send

results to the next task.

The calculation of weights is the most computationally intensive part of the STAP algorithm.

For the computation of the weight vectors for the current CPI data cube, data cubes from previous

CPIs are used as input data. This introduces temporal data dependency. For example, suppose

that a set of CPI data cubes entering the pipeline sequentially are denoted by������� , �����
� �!�#" " " .
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At any time instance� , the Doppler filtering task is processing���$�%� and the beamforming task is

processing�&�$�%�('*) . In the meanwhile, the weight computation task is using past CPIs in the same

azimuthal direction to calculate the weight vectors for�&�$�%� as described below. The computed

weight vectors will be applied to�&�$�%� in the beamforming task at the next time instance (�,+-� ).
Thus, temporal data dependencies exist and are represented by arrows with dashed lines,�/.0)21 3
and �/.5461 7 , in Figure 4 where�/.8�91 : represents temporal data dependency of task; on data from

task � . In a similar manner, spatial data dependencies<=.8�91 : can be defined and are indicated in

Figure 4 by arrows with solid lines.

Throughput and latency are two important measures for performance evaluation on a pipeline

system. The throughput of our pipeline system is the inverse of the maximum execution time

among all tasks, i.e.,
>@?BADCFE*G
?IH*E*> � �JLKFMN6O �9PRQ ���

" (1)

To maximize the throughput, the maximum value of��� should be minimized. In other words, no

task should have an extremely large execution time. With a limited number of processors, the

processor assignment to different tasks must be made in such a way that the execution time of the

task with highest computation time is reduced.

The latency of this pipeline system is the time between the arrival of the CPI data cube at the

system input and the time at which the detection report is available at the system output. Therefore,

the latency for processing one CPI is the sum of the execution times of all the tasks except weight

computation tasks, i.e.,
SUT >WV XZY�[ �\� N +^] T!_�` �Z3a�6��7�bc+d��ef+d��gh" (2)

Equation (2) does not contain��) and ��4 . The temporal data dependency does not affect the

latency because weight computation tasks use data from the previous instance of CPI data rather

than the current CPI. The filtered CPI data cube sent to the beamforming tasks do not wait for the

completion of its weight computation but rather for the completion of the weight computation of

the previous CPI. For example, when the Doppler filter processing task is processing������� , the

weight computation tasks use the filtered CPI data,�&�$�%�('*) , to calculate the weight vectors for

������� . At the same time, the beamforming tasks are working on�������9'*) using the data received

from the Doppler filter processing and weight computation tasks. The beamforming tasks do not
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wait for the completion of the weight computation task when processing�������9'*) data. The overall

system latency can be reduced by reducing the execution times of the parallel tasks, e.g.,� N , ��3 ,
��7 , �Ze , and �Zg in our system.

Next, we briefly describe each task and its parallel implementation. A detailed description of

the STAP algorithm we used can be found in [1, 2].

5.1 Doppler Filter Processing

The input to the Doppler filter processing task is one CPI complex data cube received from a

phased array radar. The computation in this task involves performing range correction for each

range cell and the application of a windowing function (e.g. Hanning or Hamming) followed by

a � -point FFT for every range cell and channel. The output of the Doppler filter processing task

is a 3-dimensional complex data cube of sizejilkm�nil� which is referred to as staggered CPI

data. In Figure 4, we can see that this output is sent to the weight computation task as well as to

the beamforming task.

Both the weight computation and the beamforming tasks are divided into easy and hard parts.

These two parts use different portions of staggered CPI data and the associated amounts of compu-

tation are also different. The easy weight computation task uses range samples only from the first

half of the staggered CPI data while the hard weight computation task uses range samples from the

entire staggered CPI data. On the other hand, easy and hard beamforming tasks use all range cells

rather than some of them. Therefore, the size of data to be transfered to the weight computation

tasks is different from the size of data to be sent to the beamforming tasks. In Figure 4, thicker

arrows connected from the Doppler filter processing task to the beamforming tasks indicates that

the amount of data sent to the beamforming tasks is more than the amount of data sent to the weight

tasks.

The basic parallelization technique employed in the Doppler filtering processing task is to par-

tition the CPI data cube across the range cells, that is, if� N processors are allocated to this task,

then each processor is responsible forophq range cells. The reason for partitioning the CPI data cube

along dimension is that it maintains an efficient accessing mechanism for contiguous memory

space. A total ofsrDkm�t� -point FFTs are performed and the best performance is achieved when

13
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tioned among uwv processors across dimension x .

every � -point FFT accesses its� data sets from a contiguous memory space. Figure 5 illustrates

the parallelization of this step. The inter-task communication from the Doppler filter processing

task to weight computation tasks is explained in Figure 6(b). Since only subsets of range cells are

needed in weight computation tasks, data collection has to be performed on the output data before

passing it to the next tasks. Data collection is performed to avoid sending redundant data and hence

reduces the communication costs.

5.2 Weight Computation

The second step in this pipeline is the computation of weights that will be applied to the next CPI.

This computation for� pulses is divided into two parts, namely, ”easy” and ”hard” Doppler bins,

as shown in Figure 6(a). The hard Doppler bins (pulses),�&y{z}|2~ , are those in which significant

ground clutter is expected. The remaining bins are easy Doppler bins,����z@��� . The main difference

between the two is the amount of data used and the amount of computation required. Not all range

cells in the staggered CPI are used in weight calculation and different subsets of range samples are

used in easy Doppler bins and hard Doppler bins.

To gather range samples for easy Doppler bins to calculate the weight vectors for the current CPI,

data is drawn from three preceding CPIs by evenly spacing out over the first one third of range

cells of each of the three CPIs. The easy weight computation task involves����z@��� QR factorizations,

block updates, and back substitutions. In the easy weight calculation, only range samples in the

first half of the staggered CPI data are used while hard weight computation employs range samples

14
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(b) Parallel inter-task communication from Doppler filter processing task to easy and hard

weight computation tasks requires different sets of range samples. Data collection needs to

be performed before the communication. This can be viewed as irregular data redistribution.

from the entire staggered CPI. Furthermore, the range extent for hard Doppler bins is split into

six independent segments to further improve clutter cancelation. To calculate weight vectors for

the current CPI, the range samples used in hard Doppler bins are taken from the immediately

preceding staggered CPI combined with older, exponentially forgotten, data from CPIs in the same

direction. This is done for each of the six range segments. The hard weight computation task

involves �!��y{zW|2~ recursive QR updates, block updates, and back substitutions. The easy and hard

weight computation tasks process sets of 2-dimensional matrices of different sizes.

Temporal data dependency exists in the weight computation task because both easy and hard

Doppler bins use data from previous CPIs to compute the weights for the current CPI. The outputs

of this step, the weight vectors, are two 3-dimensional complex data cubes of size�&��z@����i���i��
and �&y{z}|2~&i�km�^i�� for the easy and hard weight computation tasks, respectively, where� is

the number of receive beams. These two weight vectors are to be applied to the current CPI in the

beamforming task. Because of the different sizes of easy and hard weight vectors, the beamforming

task is also divided into easy and hard parts to handle different amounts of computation.

Given the uneven nature of the weight computations, different sets of processors are allocated
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Figure 7. Partitioning strategy for easy and hard weight computation tasks. Data cube is

partitioned across dimension � .

to the easy and hard tasks. In Figure 4,�=) processors are allocated to easy weight computation

and ��4 processors to hard weight computation. Since weight vectors are computed for each pulse

(Doppler bin), the parallelization in this step involves partitioning of the data along dimension� ,

that is, each processor in easy weight computation task is responsible for�*�9�2�9�pI� pulses while each

processor in hard weight computation task is responsible for��� �2���pa� pulses, as shown in Figure 7.

Notice that the Doppler filter processing and weight computation tasks employ different data

partitioning strategies (along different dimensions.) Due to different partitioning strategies, an

all-to-all personalized communication scheme is required for data redistribution from the Doppler

filter processing task to the weight computation task. That is, each of the�=) and ��4 processors

needs to communicate with all� N processors allocated to the Doppler filter processing task to

receive CPI data. Since only subsets of the Doppler filter processing task’s output are used in

the weight computation task, data collection is performed before inter-task communication. Al-

though data collection reduces inter-task communication cost, it also involves data copying from

non-contiguous memory space to contiguous buffers. Sometimes the cost of data collection may

become extremely large due to hardware limitations (e.g. high cache miss ratio.) When sending

data to the beamforming task, the weight vectors have already been partitioned along dimension

� which is the same as the data partitioning strategy for the beamforming task. Therefore, no data

collection is needed when transferring data to the beamforming task.
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5.3 Beamforming

The third step in this pipeline (which is actually the second step for the current CPI because the re-

sult of the weight task is only used in the subsequent time step) is beamforming. The inputs of this

task are received from both the Doppler filter processing and weight computation tasks, as shown

in Figure 4. The easy weight vector received from the easy weight computation task is applied to

the easy Doppler bins of the received CPI data while the hard weight vector is applied to the hard

Doppler bins. The application of weights to CPI data requires matrix-matrix multiplications on

two received data sets. Due to different matrix sizes for the multiplications in the easy and hard

beamforming tasks, uneven computational load results. The beamforming task is also divided into

easy and hard parts for parallelization purposes. This is because the easy and hard beamform-

ing tasks require different amounts and portions of CPI data, and involve different computational

loads. The inputs for the easy beamforming task are two 3-dimensional complex data cubes. One

data cube, which is received from the easy weight computation task, is of size�&��z6�U��i�� i�� .

The other is from the Doppler filter processing task and its size is����z@����i���it . A total of ����z@���
matrix-matrix multiplications are performed where each multiplication involves two matrices of

size � i^� and �dil , respectively. The hard beamforming task also has two input data cubes

which are received from the Doppler filter processing and hard weight computation tasks. The data

cube of size�I�&y{zW|�~�it� itkm� is received from the hard weight computation task and the Doppler

filtered CPI data cube is of size�&y{zW|�~$inkm�ni� . Since range cells are divided into 6 range seg-

ments, there are a total of�!�&y{z}|2~ matrix-matrix multiplications in hard beamforming. The results

of the beamforming task are two 3-dimensional complex data cubes of size�&��z6�U��in� in and

�&y{z}|2~�i�� i� corresponding to the easy and hard parts, respectively.

In a manner similar to the weight computation task, parallelization in this step also involves par-

titioning of data across the� dimension (Doppler bins.) Different sets of processors are allocated

to the easy and hard beamforming tasks. Since the cost of matrix multiplications can be determined

accurately, the computations are equally divided among the allocated processors for this task. As

seen from Figure 4, this task requires data to be communicated from the first as well as the second

task. Because data is partitioned along different dimensions, an all-to-all personalized communi-

cation is required for data redistribution between the Doppler filter processing and beamforming
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Figure 8. Data redistribution from Doppler filter processing task to easy beamforming task. CPI

data subcube of size  ¡!¢¤£�¥^£�¦¨§�©«ªU¬¡! is reorganized to subcube of size ¦¨§�©«ªU¬¡! £  ¡!¢�£�¥ before

sending from one processor in Doppler filter processing task to another in easy beamforming

task.

tasks. The output of the Doppler filter processing task is a data cube of size®i�k¯��i�� which is

redistributed to the beamforming task after data reorganization in the order of�°i±²i±km� . Data

reorganization has to be done before the inter-task communication between the two tasks takes

place, as shown in Figure 8.

Data reorganization involves data copying from non-contiguous memory space and its cost may

become extremely large due to cache misses. For example, two Doppler bins in the same range

cell and the same channel are stored in contiguous memory space. After data reorganization, they

are ophq r
� element distance apart. Therefore, if� N is small and the size of the CPI data subcube

partitioned in each processor is large, then it is quite likely that expensive data reorganization will

be needed which becomes a major part of the communication overhead. The algorithms which

perform data collection and reorganization are crucial to exploit the available parallelism. Note

that receiving data from the weight computation tasks does not involve data reorganization or data

collection because they have the same partitioning strategy (along dimension� .)
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5.4 Pulse Compression

The input to the pulse compression task is a 3-dimensional complex data cube of size��i´�µi¶ , as

shown in Figure 9. This data cube consists of two subcubes of size�&��z@����i��siw and �&y{z}|2~·i��si
 which are received from the easy and hard beamforming tasks, respectively. Pulse compression

involves convolution of the received signal with a replica of the transmit pulse waveform. This is

accomplished by first performing -point FFTs on the two inputs, point-wise multiplication of the

intermediate result and then computing the inverse FFT. The output of this step is a 3-dimensional

real data cube of size�¸i��¹i´ . The parallelization of this step is straightforward and involves the

partitioning of the data cube across the� dimension. Each of the FFTs could be performed on an

individual processor and, hence, each processor in this task gets an equal amount of computation.

Partitioning along the� dimension also results in an efficient accessing mechanism for contiguous

memory space when running FFTs. Since both the beamforming and pulse compression tasks use

the same data partitioning strategy (along dimension� ), no data collection or reorganization is

needed prior to communication between these two tasks. After pulse compression, the square of

the magnitude of the complex data is computed to move to the real power domain. This cuts the

data set size in half and eliminates the computation of the square root.

19



5.5 CFAR Processing

The input to this task is an�²i±� i� real data cube received from the pulse compression task.

The sliding window constant false alarm rate (CFAR) processing compares the value of a test cell

at a given range to the average of a set of reference cells around it times a probability of false alarm

factor. This step involves summing up a number of range cells on each side of the cell under test,

multiplying the sum by a constant, and comparing the product to the value of the cell under test.

The output of this task, which appears at the pipeline output, is a list of targets at specified ranges,

Doppler frequencies, and look directions. The parallelization strategy for this step is the same as

for the pulse compression task. Both tasks partition the data cube along the� dimension. Also,

no data collection or reorganization is needed in the pulse compression task before sending data to

this task.

6 Software Development and System Platform

All the parallel program development and their integration was performed using ANSI C lan-

guage and message passing interface (MPI) [24]. This permits easy portability across various

platforms which support C language and MPI. Since MPI is becoming a de facto standard for

high-performance systems, we believe the software is portable.

The implementation of the STAP application based on our parallel pipeline system model has

been done on the Intel Paragon at the Air Force Research Laboratory, Rome, New York. This

machine contains 321 compute nodes interconnected in a two-dimensional mesh. The Paragon

runs Intel’s standard Open Software Foundation (OSF) UNIX operating system. Each compute

node consists of three i860 RISC processors which are connected by a system bus and share a 64M

byte memory. The speed of an i860 RISC processor is 40 MHz and its peak performance is 100M

floating point operations per second. The interconnection network has a message startup time of

35.3 º sec and a data transfer time of 6.53 nsec/byte for point-to-point communication.

In our implementation, a double buffering strategy was used both in the receive and send phases.

During the execution loops, this strategy employs two buffers alternatively such that one buffer can

be processed during the communication phase while the other buffer is processed during the com-

pute phase. Together with the double buffering implementation, asynchronous send and receive
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» : number of CPIs

inBuf[2] : input data buffer

outBuf[2] : output data buffer

1 for ¼B½¿¾ to »�ÀLÁ
2 ÂFÃ«Ä6Å´½�ÆÇ¼ ÀLÁÉÈ mod Ê
3 Ë2ÌDÃ=½-¼ mod Ê
4 » Ä@ÍDÎ*½ÏÆÇ¼!Ð Á6È mod Ê
5 Î�Ñ�½ read timer

6 post async receives for inBuf[» Ä6ÍFÎ ]
7 wait for completion of previous receives for inBuf[Ë}ÌDÃ ]
8 data unpacking on inBuf[Ë2ÌIÃ ]
9 Î�Òc½ read timer

10 computation on inBuf[Ë2ÌIÃ ] and result in outBuf[Ë}ÌDÃ ]
11 ÎUÓÔ½ read timer

12 data packing for outgoing message on outBuf[Ë2ÌIÃ ]
13 post async sends for outBuf[Ë2ÌIÃ ] to next task

14 wait for completion of sends for outBuf[ÂFÃ«Ä6Å ]

15 ÎUÕÔ½ read timer

Figure 10. Implementation of timing computation and communication for each task. A double

buffering strategy is used to overlap the communication with the computation. Receive time =
Öh×/ØÙÖ v , compute time =

Ö%Ú¤ØÙÖh×
, and send time =

Ö�Û�ØÜÖ%Ú
.

calls were employed in order to maximize the overlap of communication and computation. Asyn-

chronous communication means that the program executing the send/receive does not wait until the

send/receive is complete. This type of communication is also referred to as non-blocking commu-

nication. The other option is synchronous communication which blocks the send/receive operation

till the message has been sent/received. The general execution flow and the approach to measure

the timing for each part of computation and communication is given in Figure 10. We used MPI

timer,MPI Wtime(), because this function is portable with high resolution.
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Table 1. The number of floating point operations for the PRI-staggered post Doppler STAP

algorithm to process one CPI data.

Task number of floating point operations

Doppler filter processing 79,691,776

hard weight computation 197,038,464

easy weight computation 13,851,792

easy beamforming 28,311,552

hard beamforming 44,040,192

pulse compression 38,928,384

CFAR processing 1,690,368

Total 403,552,528

7 Performance Results

We specified the parameters that were used in our experiments as follows:

Ý range cells (Þ ) = 512,

Ý channels (ß ) = 16,

Ý pulses (à ) = 128,

Ý receive beams (á ) = 6,

Ý easy Doppler bins (à ��z@��� ) = 72, and

Ý hard Doppler bins (à/y{zW|2~ ) = 56.

Given these values of parameters, the total number of floating point operations (flops) required for

each CPI data to be processed throughout this STAP algorithm is 403,552,528. Table 1 shows the

number of flops required for each task. A total of 25 CPI complex data cubes were generated as in-

puts to the parallel pipeline system. Each task in the pipeline contains three major parts: receiving

data from the previous task, main computation, and sending results to the next task. Performance

results are measured separately for these three parts, namely receiving time, computation time, and
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Figure 11. Performance and speedup of computation time as a function of number of compute

nodes for all tasks.

sending time. In each task timing results for processing one CPI data were obtained by accumu-

lating the execution time for the middle 20 CPIs and then averaging it. Timing results presented

in this paper do not include the effect of the initial setup (first 3 CPIs) and final iterations (last 2

CPIs).

7.1 Computation Costs

The task of computing hard weights is the most computationally demanding task. The Doppler

filter processing task is the second most demanding task. Naturally, more compute nodes are

assigned to these two tasks in order to obtain a good performance. For each task in the STAP

algorithm, parallelization was done by evenly dividing the computational load across the compute

nodes assigned. Since there is no intra-task data dependency, no inter-processor communication
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Table 2. Timing results of inter-task communication from Doppler filter processing task to its

successor tasks. Time in seconds.

easy weight hard weight easy BF hard BF

# nodes 16 56 112 16 16

send recv send recv send recv send recv send recv

Doppler 8 .1332 .4339 .1332 .3603 .1332 .4441 .1332 .4509 .1332 .4395

filter 16 .0679 .1780 .0679 .1048 .0679 .1837 .0679 .1955 .0679 .1843

32 .0340 .0511 .0332 .0034 .0340 .0563 .0340 .0646 .0340 .0519

occurs within any single task in the pipeline. Another way to view this is that intra-task communi-

cation is moved to the beginning of each task within the data redistribution step. Figure 11 gives

the computation performance results as functions of the numbers of nodes and the corresponding

speedup on the AFRL Intel Paragon. For each task, we obtained linear speedups.

7.2 Inter-task Communication

Inter-task communication refers to the communication between the sending and receiving (distinct

and parallel) tasks. This communication cost depends on both the processor assignment for each

task as well as on the volume and extent of data reorganization. Tables 2 to 6 present the inter-task

communication timing results. Each table considers pairs of tasks where the number of compute

nodes for both tasks are varied. In some cases timing results shown in the tables contain idle

time for waiting for the corresponding task to complete. This happens when the receiving task’s

computation part completes before the sending task has generated data to send.

From most of the results (Tables 2 to 6) the following important observations can be made. First,

when the number of nodes is unbalanced (e.g., sending task has a small number of nodes while

the receiving task has a large number of nodes), the communication performance is not very good.

Second, as the number of nodes is increased in the sending and receiving tasks, communication

scales tremendously. This happens for two reasons. One, each node has less data to reorganize,

pack and send and each node has less data to receive; and two, contention at the sending and

receiving nodes is reduced. For example, Table 2 shows that when the sending task’s number of
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Table 3. Timing results of inter-task communication from easy weight computation task to easy

beamforming task. Time in seconds.

easy beamforming

# nodes 8 16

send recv send recv

easy 4 .0005 .1956 .0007 .2570

weight 8 .0088 .0883 .0004 .0905

16 .0768 .0807 .0003 .0660

Table 4. Timing results of inter-task communication from hard weight computation task to hard

beamforming task. Time in seconds.

hard beamforming

# nodes 8 16

send recv send recv

hard 28 .0007 .1798 .0007 .2485

weight 56 .0100 .1468 .0065 .0765

112 .1824 .1398 .0005 .0543

nodes is increased from 8 to 32, the communication times improve in a superlinear fashion. Thus,

it is not sufficient to improve the computation times for such parallel pipelined applications to

improve throughput and latency.

In Figure 10 the receiving time for each loop is given by subtracting
> ) from

> N . Since compu-

tation has to be performed only after the input data has been received, receiving time may contain

the waiting time for the input, shown in line 4. Sending time,
> 3câ > 4 , measures the time containing

data packing (collection and reorganization) and posting sending requests. Because of the asyn-

chronous send used in the implementation, the results shown here are the visible sending time and

the actual sending action may occur in other portions of the task. Similar to the receiving time, the

sending time may also contain the waiting time for the completion of sending requests in the previ-
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Table 5. Timing results of inter-task communication from easy and hard beamforming tasks to

pulse compression task. Time in seconds.

pulse compression

# nodes 8 16

send recv send recv

easy 4 .0069 .5016 .0069 .5714

BF 8 .0036 .1379 .0036 .2090

16 .0580 .0771 .0022 .0569

send recv send recv

hard 4 .0054 .5016 .0054 .5714

BF 8 .0029 .1379 .0030 .2090

16 .1159 .0771 .0017 .0569

Table 6. Timing results of inter-task communication from pulse compression task to CFAR

processing task. Time in seconds.

CFAR processing

# nodes 4 8

send recv send recv

pulse 4 .0099 .3351 .0098 .3348

compr 8 .0053 .0662 .0051 .1750

16 .1256 .0435 .0028 .1783

ous loop, shown in line 8. Especially in the cases when two communicating tasks have an uneven

partitioned parallel computation load, this effect becomes more apparent. With a large number of

nodes, there is tremendous scaling in performance of communicating data as the number of nodes

is increased. This is because the amount of processing for communication per node is decreased

(as it handles less amount of data), the amount of data per node to be communicated is decreased

and the traffic on links going in and out of each node is reduced. This model scales well for both

computation and communication.
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7.3 Integrated System Performance

Integrated system refers to the evaluation of performance when all the tasks are considered to-

gether. Throughput and latency are the two most important measures for performance evaluation

in addition to individual task computation time and inter-task communication time. Table 7 gives

timing results for three different cases with different node assignments.

In section 5 equations (1) and (2) provide the throughput and latency for one CPI data set. The

measured throughput is obtained by placing a timer at the end of the last task and recording the

time difference between every loop (that is between two successive completions of the pipeline.)

The inverse of this measure provides the throughput. On the other hand, it is more difficult to

measure latency because it requires synchronizing clocks at the first and last task’s nodes. Thus, to

obtain the measured latency, the timing measurement should be made by first reading time at both

the first task and last task when the first task is ready to read a new input data. This can be done by

sending a signal from the first task to the last task when the first task is ready for reading the new

input data. Then the timer for the last task can be started.

In fact, the latency given in equation (2) represents anupper bound because the way we time

tasks contains the time of waiting for input from the previous task. This waiting time portion

overlaps with the computation time in the previous tasks and should be excluded from the latency.

Thus, the latency results are conservative values and the real latency is expected to be smaller than

this value. However, the latency given from equation (2) indicates the worst-case performance for

our implementation. The real latency equation, therefore, becomes

ADV T¯S�S�T >WV XZY�[ �¸� N + JLKFM ` �wã3 �6�wã7 bc+d�wãe +��wãg (3)

where� ã� = ��� - idle time at receiving,� = 3, 4, 5, and 6.

Table 8 gives the throughput and latency results for the 3 cases shown in Table 7. From these 3

cases, it is clear that even for the latency and throughput measures we obtain linear speedups from

our experiments. Given that this scale up is up to compute 236 nodes (we were limited to these

number of nodes due to the size of the machine), we believe these are very good results.

As discussed in section 4, tradeoffs exist between assigning nodes to maximize throughput and

to minimize latency, given limited resources. Using two examples, we illustrate how further per-

formance improvements may (or may not) be achieved if few extra nodes are available. We now
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Table 7. Performance results for 3 cases with different node assignments. Time in seconds.

case 1: total number of nodes = 236

# nodes recv comp send total

Doppler filter 32 .0055 .0874 .0348 .1276

easy weight 16 .0493 .0913 .0003 .1408

hard weight 112 .0555 .0831 .0005 .1390

easy BF 16 .0658 .0708 .0021 .1387

hard BF 28 .0936 .0414 .0010 .1361

pulse compr 16 .0551 .0776 .0028 .1355

CFAR 16 .0910 .0434 - .1344

throughput 7.2659

latency 0.3622

case 2: total number of nodes = 118

# nodes recv comp send total

Doppler filter 16 .0110 .1714 .0668 .2492

easy weight 8 .0998 .1636 .0003 .2637

hard weight 56 .0979 .1636 .0005 .2621

easy BF 8 .1302 .1267 .0036 .2605

hard BF 14 .1782 .0822 .0017 .2622

pulse compr 8 .1027 .1543 .0051 .2621

CFAR 8 .1742 .0864 - .2606

throughput 3.7959

latency 0.6805

case 3: total number of nodes = 59

# nodes recv comp send total

Doppler filter 8 .0219 .3509 .1296 .5024

easy weight 4 .1796 .3254 .0003 .5053

hard weight 28 .1779 .3265 .0006 .5050

easy BF 4 .2439 .2529 .0068 .5037

hard BF 7 .3370 .1636 .0032 .5039

pulse compr 4 .1806 .3067 .0097 .4970

CFAR 4 .3240 .1723 - .4963

throughput 1.9898

latency 1.3530
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Table 8. Throughput and latency for the 3 cases in Table 7. Real results are obtained from

the experiments while equation results are obtained from applying individual tasks’ timing to

equations (1) and (2). The unit of throughput is number of CPIs per second. The unit of latency

is second.

# of nodes 236 118 59

equation 7.1019 3.7919 1.9791
throughput

real 7.2659 3.7959 1.9898

equation 0.5362 1.0346 1.9996
latency

real 0.3622 0.6805 1.3530

Table 9. Performance results for adding 4 more nodes to Doppler filter processing task to case

2 in Table 7. Time in seconds.

total number of nodes = 122

# nodes recv comp send total

Doppler filter 20 .0090 .1395 .0540 .2024

easy weight 8 .0519 .1633 .0003 .2155

hard weight 56 .0486 .1644 .0005 .2135

easy BF 8 .0815 .1272 .0037 .2124

hard BF 14 .1232 .0823 .0018 .2073

pulse compr 8 .0519 .1543 .0051 .2113

CFAR 8 .1240 .0864 - .2105

throughput 5.0213

latency 0.5498

take case 2 from Table 7 as an example and add some extra nodes to tasks to analyze its affect

to the throughput and latency. Suppose that case 2 has fulfilled the minimum throughput require-

ment and more nodes can be added. Table 9 shows that adding 4 more nodes to the Doppler filter

processing task not only increases the throughput but also reduces the latency. This is because the

communication amount for each send and receive between the Doppler filter processing task to
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Table 10. Performance results for adding 16 more nodes to pulse compression and CFAR

processing tasks to the case in Table 9. Time in seconds.

total number of nodes = 138

# nodes recv comp send total

Doppler filter 20 .0091 .1395 .0541 .2027

easy weight 8 .0516 .1633 .0003 .2152

hard weight 56 .0488 .1644 .0005 .2137

easy BF 8 .0819 .1273 .0037 .2129

hard BF 14 .1301 .0823 .0018 .2142

pulse compr 16 .1337 .0775 .0028 .2140

CFAR 16 .1701 .0434 - .2135

throughput 4.9052

latency 0.4247

weight computation and to beamforming tasks is reduced (Table 9). So, clearly, adding nodes to

one task not only affects that task’s performance but has a measurable effect on the performance

of other tasks. By increasing the number of nodes 3%, the improvement in throughput is 32% and

in latency is 19%.Such effects are very difficult to capture in purely theoretical models because of

the secondary effects.

Since the parallel computation load may be different among tasks, bottleneck problems arise

when some tasks in the pipeline do not have the proper numbers of nodes assigned. If the number of

nodes assigned to one task with a heavy work load is not enough to catch up the input data rate, this

task becomes a bottleneck in the pipeline system. Hence, it is important to maintain approximately

the same computation time among tasks in the pipeline system to maximize the throughput and,

also, achieve higher processor utilization. One bottleneck task can be seen when its computation

time is relatively much larger than the rest of the tasks. The entire system’s performance degrades

because the rest of the tasks have to wait for the bottleneck task’s completion to send/receive data

to/from it no matter how many more nodes assigned to them and how fast they can complete their

jobs. Therefore, poor task scheduling and processor assignment will cause a significant portion

of idle time in the resulted communication costs. In Table 10 we added a total of 16 more nodes
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to the pulse compression and CFAR processing tasks to the case in Table 9. Comparing to case

2 in Table 7, we can see that the throughput increased. However, the throughput did not improve

compared to the results in Table 9, even though this assignment has 16 more nodes. In this case,

the weight tasks are the bottleneck tasks because their computation costs are relatively higher than

other tasks. We can see that the receiving time of the rest of the tasks are much larger than their

computation time. A significant portion of idle time waiting for the completion of weight tasks

is in the receiving time. On the other hand, we observe 23% improvement in the latency. This is

because the computation time is reduced in the last two tasks with more nodes assigned. From

equation (3), the execution time of these two tasks,äwåæ and äwåç , decreases and, therefore, the latency

is reduced.

8 Conclusions

In this paper we presented performance results for a PRI-staggered post-Doppler STAP algorithm

implementation on the Intel Paragon machine at the Air Force Research Laboratory, Rome, New

York. The results indicate that our approach of parallel pipelined implementation scales well both

in terms of communication and computation. For the integrated pipeline system, the throughput

and latency also demonstrate the linear scalability of our design. Linear speedups were obtained

for up to 236 compute nodes. When more than 236 nodes are used, the speedup curves for the

results of throughput and latency may saturate. This is because the communication costs will

become significant with respect to the computation costs.

Almost all radar applications have real-time constraints. Hence, a well designed system should

be able to handle any changes in the requirements on the response time by dynamically allocating

or re-allocating processors among tasks. Our design and implementation not only shows tradeoffs

in parallelization, processor assignment, and various overheads in inter and intra-task commu-

nication etc., but it also shows that accurate performance measurement of these systems is very

important. Consideration of issues such as cache performance when data is packed and unpacked,

and impact of the parallelization and processor assignment for one task on another task are crucial.

This is normally not easily captured in theoretical models. In the future we plan to incorporate fur-

ther optimizations including multi-threading, multiple pipelines and multiple processors on each
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compute node.
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Appendix A: Space-Time Adaptive Processing with Mainbeam
Constraint

The space-time adaptive processing problem can be formulated as a least squares minimization

of the clutter response. This approach is desirable from a computational standpoint, as it is not

necessary to produce an estimate of the clutter covariance matrix, which is an orderè�é operation.

In the least squares approach, a matrixê is constructed from snapshots of the array data after

Doppler processing, and a weight vectorë is computed which minimizes the norm of the product

vector êìë . The snapshots are samples of data from each array element taken at range cells

adjacent to the test cell, and also from multiple coherent processing intervals (CPI’s) which are

decorrelated across time. Typically a beam constraint, such as a requirement for unit response in

the direction of the desired target, is added to rule out the trivial solution,ë íìî . As illustrated

in Figure 12, the weight vector is computed by multiplying the pseudoinverse ofê times a unit

vector.

...

2

n

1data  vector 

data  vector 

data  vector 

swH

w

ws

=  column vector  of  element  weights

=  steering  vector  (column)

Find w =  least square error solutionof : 

M =

M w = [ 0 0 . . . 0 1]T

Figure 12. Conventional least squares processing.

While assuring a nonzero solution for the weights, the conventional beam constraint placed on

the least squares problem as formulated above often produces an adapted pattern with a highly

distorted main beam with a peak response far removed from the target of interest. The algorithm

that was formulated and implemented here is a constrained version of the least squares problem.

Given a steering vectorëðï we seek a weight vectorë that minimizes the clutter response while

33



...

data  vector 

data  vector 2

n

1

data  vector 

swH

ws

=  column vector  of  element  weights

=  steering  vector  (column)

M =

w

Identity  Matrix  * k

k =  beam  constraint  weight

Find w =  least square error solutionof : M w = [ 0 0 . . . 0 ]H

Figure 13. Beam constrained least squares processing.

maintaining a close similarity betweenë and ëðï . This condition is specified by augmenting

the data matrixê with an identity matrix as depicted in Figure 13. The product of the identity

matrix and the solution vectorë is set to a scalar multiple of the steering vectorë0ï . The least

squares solution is a compromise between clutter rejection and preservation of main beam shape.

In practice, only slight modifications of the weight vector are required to move spatial nulls into

the clutter region, for clutter returns that are outside of the main beam. Thus, preservation of main

beam shape requires only a slight reduction of clutter rejection performance, and is often offset by

an increase in array gain on the desired target. As shown in Figure 13, the preservation of main

beam shape is controlled by scalarñ . The choice ofñ directs the least squares solution forë to

adhere more closely to the steering vector whenñ is large, and emphasize clutter cancellation at the

expense of beam shape whenñ is small. Sinceñ is variable depending on operating requirements,

we normalize the resulting weight vector to unit length.

There is a computational advantage of the constrained technique of Figure 13 over that of Figure

12 for systems that utilize multiple beam steering. Since the steering vectorë0ï appears only on the

right side of the equation, and matrixê is independent of the main beam pointing angle, the QR

factorization ofê needs be performed only once for a given data set. Multiple weight vectors can

be computed for different steering vector choices by multiplying the same matrix pseudoinverse or

QR factorization by several choices of constraint vectors.
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Appendix B: Matlab Version of RT-MCARM processing Algo-
rithm
function [detections] =process CPI(CPI data, N)

% N is the CPI number

num channels = 16;
num range = 512;
num pulses = 128;
num doppler = num pulses;
numHardDop = 56;
stagger = 3; % PRI-stagger pulses
BeamConstraintWt = 0.5;
FreqConstraintWt = 0.5;
DopplerWindow =hanning(num pulses-stagger);
rangeSegmentBoundaries= [0 75 150 225 300 375 512];

% Doppler Filter Processing
dopplerdata =rawToFFT(CPI data,DopplerWindow,stagger);

% Easy Weight Computation and Beamforming
beamformeddata(numHardDop/2+1:numdoppler-numHardDop/2) = easywts.’ * doppler data;
easywts = zeros(numdoppler,numchannels,numbeams);
for idop = numHardDop/2+1 : numdoppler - numHardDop/2,

[easywts(idop,:,:), previousdopplerdata(idop,:,:)] =computeEasyWts(idop,BeamConstraintWt, ...
Steeringvectors,previousdopplerdata(idop,:,:),dopplerdata(idop,:,:));

end;

% Hard Weight Computation and Beamforming
for rangeSeg = 1:numrangesegments,

startR = rangeSegmentBoundaries(rangeSeg)+1;
endR = rangeSegmentBoundaries(rangeSeg+1);

beamformeddata(1:numHardDop/2,:,startR:endR) = hardwts(rangeSeg,1:numHardDop/2,:,:).’ * ...
dopplerdata(1:numHardDop/2,:,startR:endR);

beamformeddata(numdoppler-numHardDop/2+1:numdoppler,:,startR:endR) = ...
hardwts(rangeSeg,numdoppler-numHardDop/2+1:numdoppler,:,:).’ * ...
dopplerdata(numdoppler-numHardDop/2+1:numdoppler,:,startR:endR);

hardwts = zeros(numrangesegments,numdoppler,numchannels,numbeams);
for idop = 1:numHardDop/2,

[wts(rangeSeg,idop,:,:), newr(idop,:,:)] =computeRecurHardWts(idop,startR,endR, ...
FreqConstraintWt,BeamConstraintWt,SteeringVectors,dopplerdata(idop,:,:), ...
new r(idop,:,:),stagger);

end;% idop
for idop = numdoppler-numHardDop/2+1:numdoppler,

[wts(rangeSeg,idop,:,:), newr(idop,:,:)] =computeRecurHardWts(idop,startR,endR, ...
FreqConstraintWt,BeamConstraintWt,SteeringVectors,dopplerdata(idop,:,:), ...
new r(idop,:,:),stagger);

end;% idop
end;% rangesegments

% Pulse Compression and CFAR processing
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pulsecompression=pulseCompression(beamformed,pcfilter freq);
detections =CFAR(pulsecompression);

end;% function processCPI

function [Doppler data] =rawToFFT(CPI data,window,stagger)
% input: CPI data(numpulses,numrange,numchannels)
% output Dopplerdata(numdoppler,numchannels,numrange)

Dopplerdata = zeros(numdoppler,numchannel,numrange);

paddedCPI data(1:numpulses-stagger,:,:) = CPIdata(1:numpulses-stagger,:,:) .* window);
paddedCPI data(numpulses-stagger+1:numpulses,:,:) = zeros(stagger,numchannels,numrange);
Dopplerdata(1:numdoppler,:,:) =fft pulses(paddedCPI data);

paddedCPI data(stagger+1:numpulses,:,:) = CPIdata(1:numpulses-stagger,:,:) .* window);
paddedCPI data(1:stagger:numpulses,:,:) = zeros(stagger,numchannels,numrange);
Dopplerdata(numdoppler+1:2*numdoppler,:,:) =fft pulses(paddedCPI data);

end;% function rawToFFT

function [wts, updateddopplerdata] =computeEasyWts(doppler,diagWts, Steeringvectors, ...
prev dopplerdata,newdopplerdata)
% computes adaptive weights directly for the easy doppler bins from data from three previous CPIs

% shift data from previous two CPIs N-1 and N-2 up, overwriting data from CPI N-3
updateddopplerdata(1:TotaleasySamples * 2/3,:) = ...

prev dopplerdata(TotaleasySamples * 1/3:TotaleasySamples,:);

updateddopplerdata(TotaleasySamples * 2/3,TotaleasySamples,:) = ...
Select Range Samples(Total easySamples * 1/3,newdopplerdata);

avg = average(updateddopplerdata) * diagWts ;

for beam=1:numbeams,
work = updateddopplerdata;
work(updateddopplerdata+1:updateddopplerdata+numchannels,:) = avg * eye(numchannels);

rhs = zeros(updateddopplerdata+numchannels,1);
rhs(updateddopplerdata+1:updateddopplerdata+numchannels,1) = Steeringvectors(:,beam);

wts(:,beam) = workò rhs;
wts(:,beam) = wts(:,beam)/(sqrt(wts(:,beam)’* wts(:,beam)));

end;
end;% function computeEasyWts

function [wts, newr] = computeRecurHardWts(doppler,startRangeSeg,endRangeSeg,spatialWt,freqWt, ...
Steeringvectors,dopplerdata,oldr,stagger, CPINum)
% computes adaptive weights recursively for the hard doppler bins.

forgettingFactor = 0.6;
qr x = zeros(2*numchannels + numhardsamples,2*numchannels);
qr x(1:2*num channels,:) = forgettingFactor * oldr;
qr x(2*num channels+1:2*numchannels+numhardsamples,:) = ...

Select Range Samples(num hardsamples,dopplerdata);
avg = average(qrx);

36



half channels = numchannels/2;
if (CPI Num mod 2 = 1) then colOffset = 0;
else colOffset = halfchannels;
end;
% constrain half of the columns
qr x(num hardsamples + 2*numchannels+1,1+colOffset:halfchannels+colOffset) = ...

[avg * eye(halfchannels)];% spatial constraints
qr x(num hardsamples + 2*numchannels+1,...

num channels+1+colOffset:numchannels+halfchannels+colOffset) = ...
[avg * eye(halfchannels) * exp(-j * 2 * pi * (doppler-1) * stagger / numdoppler)];

[q new r] = qr(qr x(1:numhardsamples + 2*numchannels + halfchannels,:),0);

for beam=1:numbeams,
work = newr;
% freq constraints scaled by e(-jk/n)
work(2*num channels+1:3*numchannels,1:numchannels) = [avg * eye(numchannels)];

rhs = zeros(3*numchannels,1);
rhs(2*numchannels+1:3*numchannels,1) = Steeringvectors(:,beam);

[q2 r2] = qr([work rhs],0);
matrhs(:,beam) = r2(1:2*numchannels,2*numchannels+1);

wts(:,beam) = workò rhs;
wts(:,beam) = wts(:,beam)/(sqrt(wts(:,beam)’* wts(:,beam)));

end;
end;% function computeRecurHardWts
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